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Abstract

A definition of essential independence is proposed for sequences of polytomous items.

For items satisfying the reasonable assumption that the expected amount of credit awarded

increases with examinee ability, we develop a theory of essential unidirnensionality which

closely parallels that of Stout. Essentially unidimensional item 6 equences can be shown

to have a unique (up to change-of-scale) dominant underlying trait, which can be consis-

tently estimated by a monotone transformation of the sum of the item scores. In more

general polytomous-response latent trait models (with or without ordered responses), an

M-estimator based upon maximum likelihood may be shown to be consistent for 0 under

essentially unidimensional violations of local independence and a variety of monotonic-

ity/identifiability conditions. A rigorous proof of this fact is given, and the standard error

of the estimator is explored. These results suggest that ability estimation methods that

rely on the summation form of the log-likelihood under local independence should generally

be robust under essential independence, but standard errors may vary greatly from what

is usually expected, depending on the degree of departure from local independence. Ar

index of c :parture from local independence is also proposed.

KEY WORDS: item response theory (IRT), polytomous !tem responses, essential inde-

pendence, unidimensionality, latent trait identifiability, likelihood-based trait estimation,

asymptotic standard errors, structural robustness, local dependence.
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1. Introduction

In the usual binary or dichotomous response formulation of item response theory

(IRT), the correctness of the jlh item in a test or item sequence is indicated by a (random)

response variable X, taking on the value 1 for correct responses and the value 0 for incor-

rect responses. This codes the examinee's response with the score we wish to assign to that

response. In considering polytomous data, it is convenient to treat the coding and scoring

operations separately. For the jih polytomous item we will code n possible response cate-

gories with the arbitrary labels xj0,x,i X and indicate the examinee s response

with the (random) response variable

Xj E {zio,xji 2:j(n-1) J-

For convenience in scoring the item, it is also useful to have a set of binary response

variables

{1 if Xi = xjm,
0 else.

Note that for each j,Y)o + Y + + = 1, and that any item scoring method A)

that assigns the nuroerical score ai, to the category x,, may be expressed in terms of the

Y's as

A =
n--1

Yi m

m=0

Finally, let X3 = (X1,X2,....X j) be the vector of item responses on a test of length J

given by a randomly-chosen examinee, and let .rj = . .r.j) denote any particular

insta.nce of Xj.

The general form of an IRT model for X j may then be expressed as

PE Xj = xi I f P[ Xj = xj le = el f(0)do. (1)
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We follow Thissen and Steinberg (1986) in considering e = (01,... ,0,1), the latent trait

or trait vector, to be a random variable (vector); thus, f(8) is this variable's probability

density function for the population in question. The traditional IRT assumption of local

independence reads, for polytomous item response models,

n-3
P[Xj=xj le =8)= ri r PJ,(8)21"^ , (LI)

j=1 rn=0

where the yi,n are observed values of Yjm corresponding to each xj, and Pj, (9) P[X, =

= ej are the response characteristic functions or, when d = 1, respo:cse characteristic

curves (RCC's). There is no natural monotonicity assumption for general polytomous

models, although for those cases in which the responses are ordered from least correct to

most correct as m increases, it seems reasonable to require that

n-3
P(G) E Pik (e) is nondecreasing in 8 for all j,rri,

k=ns

that is, nondecreasing in each coordinate of 6 with the other coordinates held fixed (these

cumulative response functions are considered by, for example, Samejima, 1972). Note

that P' (8) = .P[response m or greater 18) is the binary item response function one would

obtain by dichotomizing the item so that response in or greater is scored as 1 (correct) and

any lower response is scored as c (incorrect). When LI and M br,th hold for a d-dimensional

trait 0, we will write di_ for cl. We will be concerned mostly with ciL = 1 models in what

follows.

This paper has two aims. First, we wish to present and explore a definition of essential

independence (El) for polytomous item response sequences. EI, proposed for binary item

sequences by Stout (1987; 1990), is a weakening of LI that is useful whenas seems often

to be the case in real-life teststhere if. a dominant underlying latent trait for the items but

3



the presence of various minor traits prevents LI from holding exactly. For items satisfying

a condition like M above, the theory of essential unidimensionality and estimation of the

dominant unidimensional latent trait based on raw test score proceeds much as in Stout

(1990). This is the subject of Sections 2 and 3.

Our second aim is to explore maximum likelihood estimates calculated under the

assumption that LI holds when in fact only EI holds. Section 4 contains the basic result:

the MLE calculated under LI remains consisLat for 9 under EI, subject only to regularity

conditions and a natural identifiability condition. Thus, maximum likelihood estimation

is robust against this realistic violation of local independence.

Monotone unidimensional local independence models will, and should, continue to be

used as basic psychometric tools since they are attractive to the intuition and lead to

explicit, analytically straightforward likelihoods. However, it is widely accepted that they

oversimplify the latent structure of most tests in the real world. In some situations, the

way the latent structure violates this simple model may be estimated and exploited, but

in many situations it may be impossible or overly expensive to collect the data needed to

ferret out a multidimensional latent structure. The discussion of this issue by Drasgow

and Parsons (1983) is especially relevant here. Essential independence is a way of char-

acterizng unidimensional stability without knowing the true likelihood function (latent

structure). The importance of the robustness result of Section 4 is that it suggests that

ability estimation methods based on the simple LI model continue to work in situations

in which the l ttent factors causing strict LI to be violated are sufficiently minor that EI

holds.

Despite this robustness in consistency, there is little robustness in variability. In
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Section 5 we consider the standard error of the estimator of Section 4, showing that if

the departure from local independence is great enough, the estimator can fail to have the

usual standard error based on the information function, can fail to converge at the usual

J-1/2 rate, and can even fail to be asymptotically normally distributed. An index of the

degree of departure from LI is proposed in Section 5 that can be used to calculate the

new standard error. LI-based estimators like the MLE can be expected to be close to

the examinee's 8 under realistic conditions if the test is long, but conventional methods

of assessing the standard errors of the estimates may be misleadingly optimistic in these

same realistic settings.

Gibbons, Bock, and Hedeker (1989) have developed a method of factor analyzing

dichotomous data with correlated specific factor-i that may be useful to obtain correct

standard error estimates i at least some IRT settings. An indication of how their method

might be used in the present context will be given in Section 5. Wainer and Wright (1980)

have also reported some success using jackknife standard error estimates to account for

extra variation in a dL = 1 Rasch model due to guessing and "sleeping" behavior.

Also important in assessing the standard errors of ability estimators is the uncertainty

involved in estimating RCC's. Tsutakawa and Soltys (1988) have incorporated RCC un-

certainty into posterior mean estimator standard errors under LI in the dichotomous case.

Adapting such methods to the EI setting will be of great importance it, eventually under-

standing the true error structure of estimated IRT models, but that is beyond our present

scope.

Although the results of this paper are stated and proved in the polytomous case, it

is expected that they will find greatest application in the dichotomous setting, where IRT
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techniques have been most fully developed. For the reader's convenience, the main points

of Sections 4 and 5 are restated for dichotomous responses in Sections 6these results

are also new in the dichotomous case. Finally, Section 7 summarizes the conclusions of

our work, and indicates extensions to other popular LI-based trait estimators, such as the

posterior mode and posterior mean.

2. Essential Independence and Item Sequences

The notions of essential independence and essential unidimensionality were introduced

in Stout (1987) and explored in the dichotomous case by Stout (1990) and Junker (1988). In

the factor analytic tradition, but with a decidedly non-factor-analytic perspective, Stout

seeks a criterion by which only dominant dimensions can be counted. When only one

dominant dimension is counted, the test is said to be essentially unidimensional.

The fundamental idea behind essential independence is that a trait vector 0 is dom-
lb

inant if, after conditioning on 0, the residual covariances among the items are small on

average. This parallels the idea, in traditional IRT, that if the latent space is "complete,

then the residual covariances are all zero. A partial answer to the question of how small

the residual covariances must be for 0 to dominate has been provided by Stout's (1987)

statistical procedure for a'.,sessing essential unidimensionality in a fixed, finite set of di-

chotomous items. If the residual covariances are small but not zero, 0 continues to have

many properties of LI latent trait vectors: it is strongly related to the total test score, it

is better and better identified as the test length grows, etc.

To examine properties of 0 and of 8 estimators as test length grows, it is necessary to
M..

embed the finite test X2,... , X j in an infinite collection of items X . For example, results

of Levine (1989) make it clear that not even the distribution of 0 is completely identifiable
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from a finite-length test, let alone particular examinees' 8 vectors. Such an embedding is

implicit even in traditional discussions of IRT trait estimation (e.g., Birnbaum, 1968, pp

455-457; Lord, 1980, p. 59).

The substantive interpretation of this embedding varies from application to appiica-

tion. In some settings it may be reasonable to imagine that the process used to generate

the test , X jwhich may, for example, involve many item writers and reviewers

generating items of the same character and in the same wayis simply continued to pro-

duce more and more items. Or. it may be reasonable to think of X1,... , X./ as forming a

(stratified) sample from a large item pool, as when test forms are constructed by hand ac-

cording to a test specification matrix, or constructed "on the fly" in computerized adaptive

testing (CAT). Other interpretations may also be appropriate.

All such interpretations may be encompassed in the following framework. In practice,

a test form of length J + 1 is seldom obtained by simply finding a form of length J and

tacking one more item onto the end of it. Instead, forms of differing lengthsintended to

measure the same constructwill be constructed at different times according to slightly

different design specifications. Thus, in attempting to understand what is meant by letting

the test length J grow. we may consider a sequence of tests

-Y3 = (X31)1

X2 = (X21, X22),

X 3 = (X31,X32,X33),

(X.11,X .121X .13,'"' IX LI),
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in which the test of length J need not be a subtest of the test of length J + 1, for any J.

The only requirement here is that e .ch test be designed to measure the same construct.

LI and other properties of the traditional IRT model extend in a natural way to such a

sequence of tests by requiring that they hold in every test X j in the sequence. We will

abstract the idea that the tests "measure the same construct" by assuming that 0 is the

same from test to test, and that when an item appears in more than one X j, it has the

same rcsponse curves each time it appears.

This framework allows us to make mathematically rigorous statements about the

identifiability, uniqueness, and estimation of dominant latent traits as test length grows. It

is justifiable insofar as it helps crystalize ideas about finite-length tests with both dominant

and minor dimensions, or it suggests ways to improve the analysis of real tests. The sense

in which 0 is the dominant influence, essential independence, will be carefully defined in

the next section. For now we remark that it is not necessary to arrange the items within

Xj in any particular order to acheive this. Rather, essential independence requires that

the relative infiuence of minor factors not included in 0 be weakerthrough cancellation

between items, moderation within items, etc.in longer tests than in shorter ones.

Formally, this framework leads to a rather messy notation, since it adds a "test in-

dex" J to all quantities under discussion: ai, becomes aji, , Ai becomes A j , etc. For

simplicity's sake, we will retain the notation of Section 1 in what follows, and speak infor-

mally of embedding the fixed test X j as the first J items in a single infinite item sequence

X = (X1,X2,X3,...). The reader should bear in mind that the results below also apply

8
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to the more general framework described above.

3. Essential Independence for Polytomous Items

The traditional approach in IRT is to say that a latent trait (vector) 0 completely

controls the interesting variation in the item responses if LI and M bold. In contrast,

we would like to be able to determine whether the latent vector 0 is the dominant in-

fluence underlying the item responses. Moreover, 0 should dominate regardless of how

the responses are scored. Thus, it is appropriate to consider an arbitrary scoring scheme

{aim} and corresponding item scores A subject only to the constraint that there is some

M < co such that 1a1,1 < M for all j,rn. All of the scoring schemes considerefl

will be bounded in this manner. If 0 is to be the dominant latent trait vector, we should

at least require that the variation of the raw score, Aj = EJ A .19 be small when we

condition on 0, as J cc.

Definition S.1. The sequence of polytomous items X is essentially independent (EI) with

respect to the latent trait(s) 0 if and only if, for every bounded scoring scheme {al, } and

every O.
ONao.

-3 .1 I -

Jim 2_, 2_, Cov(Ai, A 10 = 0) = 0.
J-00 2

1=3 j=3

(E1)

This definition of El for pc.lytomous items, which is equivalent to requiring that

Var(A-j I 0 = 0) = 0 for every bounded scoring scheme, directly generalizes Stout's

definition of strong 1 for binary items (Definition 3.5, Stout, 1990). Stout's various defini-

tions of essential independence are likely not equivalent in general, but they are equivalent

when the residual covariances are nonnegative (as seems plausible in many educational
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testing contexts; see T. he discussion following Theorem 5.1 below). Only the strong EI

definition generalizes naturally to the polytomous case, and for this reason it is preferred

in this paper.

Clearly, every LI item sequence is El. Since the covariances above are unaffected by

shifting the coefficients from aim to cep,. = aim + ci, for any constants c,, we see that

Definition 3.1 is equivalent to ones in which only positive, bounded aim are allowed; or

only bounded ai, for which at least one response from each item has aim = 0 are allowed;

etc. Now, consider the expected item scores,

n I
Ai = EIA1 10=91= E aj, Pj, (9),

Tr' =

and the expected raw test score, or test characteristic function.

= A j (0).J

Theorem 3.1. The following are equivalent, for a sequence of polytomous items X:

(a) X is El with respect to 0;

(b) For each bounded scoring scheme {al,} and each 8,

lira E[(Aj Aj(8))2 1 = 8) = 0:
J oo

(c) For each bounded scoring scheme {aim) and each 8,

1

al, [
j=j rn=0

in probability, given G = 0, as J

10

1 3



Proof: The proof is an easy extension of the proof of Theorem 3.2 of Stout (1990).

Estimating A j(9) is not necessarily useful unless e is unidimensional. Just as with bi-

nary items, a particular value A j(9) may be possible for examinees with radkally different

9's due to compensation among the components of 9. Hereafter, we will restrict ourselves

to ur .dimensional traits e and consider estimating each examinee's 9.

When 0 is unidimensional, some sort of monotonicity condition becomes useful, so

that we can estjmate 9 with ij = A71(Aj), where A71(.) is the inverse of Aj(8). (In the

usual binary setting A71 (A j) = 137' (.tj), for example.) In models that award partial

credit for partially-correct answers, it seems natural to require that the expected amount

of partial credit awarded on each item increases with the level of the latent trait:

A (9) is nondecreasing in 9 for each j. (M

What is the relationship between condition M in Section 1 and M above? We will

call a sequence of items X for which the item response categories f.rj,} are indexed so

that M holds an ordered-response item sequence. On the other hand, if a scoring scheme

{a,} satisfies, for each j,0 < a,0 < a,, < aj(n_i), we will call it a ordered scorsng

scheme. Then, with the convention that aj(_1) --..s- 0,

n-1
Aj(8) = E a

n-1

Pjk(8) = E Cajrn a1(1-3))P;,(9).
k=0 m2s0

It follows that condition M is equivalent to M holdirs for every ordered-response scoring

scheme. M is a condition that has been considered for many parametric ordered-response

models. For example, Samejima (1972) has shown that M does hold for her graded-response

11
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model, as well as for Bock's (1972) clminal model constrained to apply to ordered-response

items (also, see Thissen and Steinberg, 1986). A somewhat milder form of monotonicity

called LAD sufficient to build the estimator ej.

Definition 3.2. The ordered scoring scheme {aj, } is asymptotically discriminating (AD)

if and only if there exists an c > 0 such that

2-,(a1(n-1) (1:0)> E, V J.
'1=1

(AD)

The item sequence X is locally asymptotically discriminating (LAD) if and only if, for each

AD ordered scoring scheme {aim}, to every 0 there corresponds an interval No containing

8 and an ea > 0 such that

A,(t) - A J(0)

t - 8 > Ee, t E No, t 9, V J. (LAD)

This generalizes LAD for binary item sequences as presented in Definition 3.8 of Stout

(1990). Note that LAD imposes a minimum discrimination condition on the test charac-

teristic curves at each 8, as J co. Also, the items themselves need not have ordered

responses; only the scoring schemes {ai,} need be ordered. LAD may viewed as nat-

urally extending the interpretation of Mthat the expected amount of credit awarded

increases with the examinee's abilityfrom a fixed-length test to an item sequence, with-

out strictly requiring M to hold for every item in the sequence.

Theorem 3.2. If the polytomous item sequence X satisfies EI and LAD with respect to the

unidimensional trait 0, then for each B and each E > 0, if {aim} is a bounded AD ordered

scoring scheme, then

urn PHA-1-1(Aj)-01>C10=0)=0.
J--oo

12
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Proof: Virtually the same as the proof of Theorem 3.6 of Stout (1990). 0

Theorem 3.3. If the polytomous item sequence X satisfies EI and LAD with respect to the

unidimensional trait 0, and satisfies EI with respect to another latent trait r, then there

exists a nondecreasing function g(t) such that

P[ = g(r)] = 1.

Proof: Follows Theorem 3.3 of Stout (1990) or Theorem 2 4 of Junker (1988). 0

Theorems 3.1 through 3.3 show that if EI and LAD hold, we can estimate a unique

dominant latent trait with any reasonable A.71(A. j): any other dominant trait we might

find will be change-of-scale of the trait we have estimated with ii:1-1(A-s). (This is the same

level of trait uniqueness as exists under the general di, = 1 model, although particular

parametic modelsfor example, the Rasch modelmay possess additional scale proper-

ties.) Since under El and LAD we can identify and estimate a unique unidimensional

dominant trait in the item response data, we will call this situation ..ssentially unidimen-

sionak dE = 1. When no single dominant trait exists in this sense, we will write dE > 1.

4. Maximum Likelihood Ability Estimation

Often it is desired to estimate individuals' 0 values, treated as parameters in the

conditional model.
I n-1

P[X1 = 10 = 19) = H IJ Pj,(9)
j=1 rn=O

19j

where yj, = 1 when xj = xj and 0 otherwise (i.e., yi, are the observed values of

Yjm). If the polytomous item sequence X does not satisfy LAD, the estimators described

13



in Section 3 may not exist, let alone be consistent for 9. Even when LAD holds, it may be

desirable to have a more-efficient estimator than A:1(As).

One common method of estimating individual exanainees' abilities is via mcsimum

likelihood, treating each exanainee's 8 as an unknown parameter to be estimated and the

RCC's as known. When LI holds, the maximum likelihood estimator (MLE) Oj is known

to be a consistent estimator for 9 as J oo, and has good asymptotic distribution prop-

erties (asymptotic normality, efficiency, etc.), assuming that the RCC's are known (e.g.,

Lehmann, 1983). We wish to investigate the behavior of ej computed under the (false)

assumption of LI with respect to 0 when the item sequence satisfies EI. Technically, e j is

called an M-estimator since it is no longer based on the true likelihood, which is unknown

under EI (e.g., Serfiing, 1980, pp. 243 ff.). However, for convenience we will continue to

call tis the MLE, since it is based on maximizing a (wrong) likelihood.

There are two reasons for working with the MLE. First, it is commonly used for exam-

inee scoring in applied IRT work, so we are compelled to know its behavior under realistic

violations of LI. Second, the behavior of the MLE may be taken to be representative of

the behavior of other likelihood-based methods. Our work with the MLE is intended to

suggest that similar robustness to departures from LI within an EI framework could be

expected of other popular estimators and predictors, such as estimators of the posterior

mode and posterior mean (e.g., Samejima, 1969; Bock & Mislevy, 1982; Lord, 1986). This

point will be taken up again in the discussion in Section 7.

Let us now turn to the requirements for consistency of 9,, the convergence of ijs to

14



as J grows. Assuming (incorrectly) that LI holds with respect to 0, the log-likelihood for

estimating one examinee's 8 based on his or her item responses Xjor equivalently, the

response-category indicators

ij(0) = log
0-1 J n-1

H Pim(9)Yi- = E E AJm(e)lim,
j=1 vn=0 j=l rn=0

where )ijm(8) = log Pj,(8). Thus, ijj must satisfy the likelihood equation

J nI
1 - 1

=
.1

E Aivit(eAYJni = 0.
j=1 na=t)

(2)

Under LI, the fact that -136(8) 0 as J oo allows us to locate a root ey of (2) near the

examinee's 8. Under EI, Theorem 3.1(c) ensures that

J n-1
16(e) = -1 E E A;m(e)m, P1,(e)] 0,J j=1

(3)

in probability, given e = 8, as long as the scoring scheme al, = Aj`..(0) is bounded

uniformly in j and m for each 8. Hence, we can expect to find a root ej of (2) near 8 under

El as well. The dependence of ai, on 8 here is irrelevant, since we are conditioning on

0 = 0 fixed.

To obtain the limit (3) and similar limits needed for consistency of ej, we assume that

for all 8, there exists an interval Bo containing 0 and a constant Mg < oo, such that

lAiu ,n1 < Me V t E Bo, V j, Tn. (4)

Condition (4) is really a fairly mild modeling assumption. For example, in the binary

three parameter logistic model it would be satisfied if all the difficulty and discrimination

parameters were bounded in absolute value.

15
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A second important consideration in likelihood-based (or indeed any) estimation is

identifiability of the parameter. The criterion used for identifiability in Section 3, LAD,

is not necessarily appropriate when the response categories are unordered. Instead, it is

typical and reasonable to require that for each 8, there exists an co > 0 such that

1 n-1
j(e) = E E (8)P;m(e) > fe, V J.

j=1 m=0
(5)

is, of course, the usual test information function. If (5) holds, there is enough

identifiability for the MLE to work. The following proposition gives several sufficient

criteria for identifiability in this sense.

Pmposition 4.1. If any of the following conditions hold, then (5) hold.:.

(a) V 0, 3 co > 0 : IP (9)?V"-1h-,m=o P, , (9) > Es, V J;

(b) V 8, 3 co > ;Tao E IP;m(9))2 > co, V J;

(c) V 8, 3 fe > Pim (8) I > co, V .1.;

nI(d) Ve, 3 to> 0:1 E-jj E m=1 P;fn (9) > (8' V j.

Proof: Condition (a) is exactly (5); condition (b) suffices by (a) and the fact that

11 Pi,,(9) > 1 always holds: condition (c) suffices by (b) and the fact that

nI r 1 n-1 2

E [P;m(9)12 -1{1 E E P! (0) jn J Jrn
j=1 m=0 j=1 rn=0

by Jensen's inequality (Ash, 1972, p. 287). Finally, condition (d) suffices by noting that

2n-1
1 j nV":" [P;en ("2 + 1 { P;m(e)}p

jm
(9) PA(8) 2=1j=1 m=2

and, using Jensen's inequality again,

n-1 2 r n-1
1 1 v

P.
im

(6)}2 0J P 0(8) J 1;0(0)j=1 m=1 j=1 tn=3
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The most interesting of the criteria in Proposition 4.1 is (d). Note that by taking

Co = 0 and aj,, 1 for m > 0 in tbe definition of LAD, we see that if LAD holds and the

RCC's are differentiable, then (5) holds also.

Each of the conditions M, LAD, and (5) represent identifiability or detection condi-

tions for the sequence X and latent trait A, and they fit into a rather neat hierarchy for

essentially independent smooth IRT models. M is the most restrictive identification con-

dition; it imposes a highly interpretable condition on each item in the test which virtually

guarantees LAD. LAD is less restrictive, in that it imposes the interpretation of M at the

test characteristic curve level, not the level of individual items. Moreover, LAD implies

(5). The minimum information condition (5) is least interpretable, but has the advantage

of widest applicability. Moreover, as Theorem 4.1 below shows, if (5) holds, then a j con-

ve:ges to 0, given 0 = O. This hierarchy is not new or deep mathematically, but serves to

illustrate the transition from intuitively appealing psychological models to adequate but

less pleasing statistical ones.

Theorem 4.1. Let X be a polytomous item sequence satisfying El. (4) and (5). Then there

exists a sequence : J > Je} of roots of (2) such that

lim P1I ej 9 I < de -= 8)=1,

for every c> 0.

Note that the sequence 9 .7 may not start at J = 1, and for small 1, there may be no

solutions to (2). This is not a serious limitation; see Theorem 4.2 below. Also, when LAD

holds, the trait being estimated is the same dominant trait whose estimation was treated

17



in Section 3; this follows from Theorem 3.3. The novelty of the following Cramer-style

proof is that (local) independence is not assumed.

Proof: Let to > 0 be arbitrary and fixed in advance. Without loss of generality, we assume

that (8 t0,9 + 0) C Bo, where Be is the interval given in (4). Our goal is to obtain

roots of (2) in the interval (0 0,0 + to). The second-order Taylor polynomial for 1.-1f9J(t)

in (0 to,8 + to) is

where

-6(t) = + -(t - 6)1`,;(6) + -(t - 0)2 ejl (C)J 2J

ri-1
1

Alim(e)Yi.
j=1 tn=0

1
+(t 0)J

rs-1
11-1E E )';,.(8)Yin, (t 9)3

1 E E
j=1 m=0 j=1 m=0

jm Vs Ajrn

(6)

= 6 + r(t 0), for some 0 < r < 1. We have already shown in (3) that ii".7(8) 0

in probability, given Er = 0, urder EI and (4). Similarly

n-1v L Ajfim(9)(Yjm Pl",(09)] O.J
J=1 m=0

Since Elit".;(0)1191 = Ij(8), this implies that i1i;(0) + LAO) 0 in probability, given

0 = O. Hence, using (4) again, we may rewrite (6) as

1 16(0 = oy,(1) (t 8
2

)11.1(0) (t 8)p j Mo},

where pj is a random quantity satisfying 1 pj I < 1, op(1) denotes quantities tending to

0 in probability, given 0 = 8, and TAO) is bounded away from 0 by (5). Thus, for large

J, 3ej(t) is approximately linear near 8, and with large probability is positive for some

18



t. E (8 (0,8), negative for some L. E (8,8+ en), and by continuity equal to zero for some

E (8 co,8 + co.) Hence, there is a sequence ô, of solutions to (2) with the property

that for any co > 0,

ph (4.7 8 1 < coke) = (9) 1,

as J oo. nirther details may be found in Serfiing (1980, pp. 143-148). 0

In general, we do not expect the roots ej of (2) to be unique (e.g., Samejima, 1973).

Moreover, among the multiple roots of (2), there is likely to be only one consistent root

sequence: Foutz (1977) proves that if ilij and 8.2,j are both consistent root sequences,

then under LI, P[e).1,j = ti2i I = -0 1 as J oo. Thus, the situation, even under LI,

is opposite that portrayed by Lord (1980, p. 59): rather than being optimistic that the

roots should be eventually unique, one might be pessimistic that multiple roots continue

to happen as J oo, and only one of these roots for each J, brings us closer to the true 9.

This is not a practical problem, however. We shall see next that the standard practice

of approximating a root of (2) by Newton's method, produces estimates that are consistent

for 8 under EI, even though the MLE and the Newton's method estimate of it were com-

puted under the assumption LI. Thus. familiar numerical methods continue to be useful

in estimating 8 under El.

Theorem 4.2. Suppose the assumptions of Theorem 4.1 hold, and let 8-.7 be any sequence

of consistent estimates for 8, given 0 = 8, Then the Newton's method improvement,

is also consistent for 0.

19
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Proof: As in Lehmann (1983, p. 423) we may substitute a Taylor expansion of ilej(ij)

about 8 into (7) to obtain

le,(8)
0' 8 = + (8j 8) or(1). (8)

The second term on the right clearly tends to zero as ej 8. For the first term, a continuity

argument shows that It"(iij) 7j(8) > 0, and we know from (3) that -2-1/
7
(8) 0.01 .1 -

Clearly, the assertion of the theorem can be iterated to show that the result 10.1* of,

say, twenty Newton steps from &i would also be consistent. Such an estimator should be

closer, in some sense, to the consistent roots found in Theorem 4.1. Newton's method

requires an initial guess ej; when LAD holds, 6j = AV (A j) is a natural choice, in view

of Theorem 3.2.

5. Standard Error of the MLE

In the usual LI ability estimation theory, we expect that the sequence e j will be

asymptotically normal and efficient,

j 0) --- AN (0 , I / j (0)), (9)

as J oo, where ij(9) is the traditional test information function introd iced in (6). A

result like (9) identifying the standard error of ej is needed to do statistical inference using

jor indeed, merely to know how well to trust ej as an estimator of 0 for particular fixed

J that arise in applications. However, (9) may fail in the essentially unidimensional case

in two interesting ways: it may be that asymptotic normality holds but the asymptotic

variance is no longer ij(8)-1; or it may be that asymptotic normality fails completely.
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When asymptotic normality does hold, we shall see that the deviation from the efficient

variance is controlled by the quantity

i

C j (a ) = E E Cov(A A; e = 9),
i=1 1=1

where the item scores Ai are constructed from the scoring scheme

( 0 )

aim E. 'Vim (0), V j,rn. (11)

The scoring scheme (11) is a technical device that will be used throughout this section.

The reader should not be mislead into thinking that (11) is a scoring scheme that could

be applied to obtain a practical estimator as in Section 2 (to do so, we would already have

to know 8!). Under EI and the bounds (4), we know that -1.7C3 (8) 0, for all 8, but the

behavior of C3(8) itsel. depends on the amount of local dependence in the item sequence

X . Under LI of course, C3(0) 0.

To see the effect of C3(0) on (9) under EI, we may deduce from (6) that

l"
j

(0)

1.1(8)
( 1 2)

in the sense that the asymptotic distributions of the left and right hand Fides are the same.

If we can identify the asymptotic distribution of (a multiple of) .1-i 6(9) then by (12),

we will also be able to identify the asymptotic distribution and rate of convergence of i3 .

An indi4:ation of what is possible is provided by Theorem 5.1 below. Let us abbreviate

cr2j(9) = Var(Aj 10)
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1 1 i-11 v- 2 %-- t--.
= 2_, Va.r(A I 8) + 2_, 2_, Cov(Ai, A i l 8),j2 2 j2

j=1 i=1 j=1
(13)

for whatever scoring scheme {cz,, } is currently under consideration. Under the scoring

scheme (11), Aj Aj(a) iej(8) and o.2.7(8) = -1.7-fij(8) + C j(8)].

Theorem 5.1. Suppose that the conditions of Theorem 4.1 hold for the item sequence X

and the latent trait 0. Also, suppose that for some fixed 8, the scoring scheme (11) yields

1 _

7;:;"CF (kr A j(8)] AN(0,1).

Then, as J oo,

(a) if Cj(8) 0 as J oc,

jio 8) AN V),
1

(b) if C (8) remains bounded for all J,

Jj 8) AN (0, L(8) CJ(8)),
ij (0)2

(14)

(c) if C .2 (0) is unbounded and R(J) is a function of J for which R2 (J)C.2 (8) I J remains

bounded,

R(J)(e 8) ,- AN (0,
R2 (J)C .2 (0))

Jij(8)2

Proof: From (12) and (14), only the asymptotic variance assertions need to be checked.

For the scoring scheme ;11), we have from (12), (13), and (14):

Var(R(J)(ej 8)18) 7,-; Var 10 =

1
R2 (J) varIL E A; e =J (8)2 J

R2 (J) 17.7(8) + C (8)

4.1 I .7 (8)2
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The assertions about the asymptotic v.riances in (a), (b), and (c) follow from this calcu-

lation by choosing R(J) appropriately. 0

Conditions (a) and (b) of the theorem correspond to the familiar case in which the rate

of convergence of 0.7 to 6 is J. If C3(0) 0 as J coo, we get the usual asymptotically

Alb

normal and efficient result (9) for 83. Otherwise, we get subefficiency or superefficiency de-

pending on the sign of C3(8). The use of the terms efficient, subefficient, and superefficient

to describe the asymptotic variance as being equal to, greater than, or less than 1;1(0) is

suggestive here but perhaps misleading. In fact, .7' (6) is the efficient variance only when

ij(0) is the true log-likelihood function. Under El, some other (unknown) log-likelihood

function L j(6) applies, and examining the true efficiency of e3 would require access to the

(unknown) function E[- (0) 10].

Condition (c) corresponds to the rate of convergence of 03 to 6 being slower than J.

This would happen, for example, if the inter-item covariances were generally positive and

sufficiently large to force Cj(6) to be unbounded. Formally, there is also the possibility

that the convergence of If- 1 j to 8 could be faster than .1- but this would require that

13 (8) + C 3 (8) 0, that is, C3(8) negative for all large J. As we will argue next, this seems

unlikely in many educational testing applications. Hence, this possibility was omitted from

the theorem statement.

For reasonably homogeneous tests, one intuitively expects that items not independent

given e would be positively correlated. This is certainly implicit in the factor-analytic

tradition of test theory, (e.g., Anastasi, 1988, pp. 377 ff.). An example of the invocation of
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this principle in IRT research is the design of the simulation study in Drasgow and Parsons

(1983). Indeed, it is quite reasonable to assume that if X is essentially unidimensional with

respect to the trait e, there are other traits e2,e3,... ,e, such that LI holds with respect

to the d-dimensional trait vector (e, 02, 03,... ,Od) (see, for example, Stout, 19334). If

these traits are psychologically meaningful, it is also reasonable to assume that they will

be associated (see _ Uand and Rosenbaum, 1986, for a definition), given 0 = 9. In the

ordered-response case, a result of Jogdeo's (1978) can be used to argue that conditional on

0 = 8 alone, the inter-item covariances will be nonnegative (indeed, any ordered scoring

scheme for X, given 0, will be associated). Thus, Cj(9) > 0 will generally be expected:

the variance of Ji (Oj 9) will generally be higher than 1a-J(8).

Theorem 4.2 gave a practical way to approximate the estimator Eij. The following

corollary extends Theorem 5.1 to obtain asymptotic normality for this approximation.

Corollary 5.1. Suppose that the conditions of Theorem 5.1 hold, and that &/ is any

estimator with R(J)(ij 9) bounded in probability. The Newton's method approximation

ri of Theorem 4.2 based on ij satisfies

9) N (0, 1-1) I3(8)J fj(6)2

Making appropriate choices of R(J), we obtain the same three cases as in Theorem 5.1.

Proof: Using (11) and (13), we may rewrite (8) as

AJ A(e) {(1.1(8)+ c./(8))1J)1l2R(J)(rj 9) R(J) + R(J)((-9- 8)1,1,(1)
c rj (0) (e)

The result follows from (14), since R(J)(iij 8) is bounded in probability. 0
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By definition, R(J)( 8) is bounded in probability if P[R(J) 9 I < BI0 =

cait made arbitrarily close to 1 as J oo by choosing B large enough. In Section 4

we sugiested using 0-.7 = A71(Aj), for any convenient scoring scheme {aj,}, as an initial

guess for Newton's method under LAD. Routine calculation using Chebyshev's inequality

shows that R(J)(§ 8) will then be bounded in probability as long as

R2 (J)
z_, 2_, Cov(A1,441 10 = 0) is bounded,
i= 1 j= I

(15)

as J co. This represents a strengthening of EI since R(J) is a fixed, increasing functioa

of J for all O. The assumption that (15) holds for scoring scheme (11) is also implicit in

Theorem 5.1. Hereafter, we will say that fast EI holds if (15) holds for a fixed rate R(J)

and every bounded scoring scheme

Theorem 5.1 also assumes that the raw score A j is asymptotically normal in the

sense of (20). Is this realistic? The following Central Limit Theorem (CLT) for dependent

random variables. easily deduced from Theorem 2.2 of Dvoretzky (1972), sheds light on

the qualitative side of this question.

Theorem 5.2. Suppose, for some fixed 9 and some bounded scoring scheme {a,,}:

(a) J2 oij(8) co;

(b) E -7 E[A, A (0) 1 Aj_3,01 0; and

( )
172m yo_ VarfAi )=1 I '01 1 ,

as J oo. Then, for this & and fai,},

1 _ -
A[Ai 3(0)) AN(0,1).
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The assumptions of Theorem 5.2 wculd be difficult to verify in practice, but this is

somewhat offset by the fact that they are intuitively meaningful; thus, we can at least ask

whether these assumptions are qualitatively appealing. Assumption (a) is merely a way of

ensuring that most items contribute significantly to A. It is difficult to imagine a useful

item sequence or scoring scheme for which this would not be true. The conditioning in

(b) is not only on a fixed value 6 of 0, but also on a fixed value of Ai...1, for each j. If

the conditioning on Aj_1 were dropped, (b) would become an exact equality. Under EI,

conditioning on 0 = 6 stabilizes A1...1 with high prc oztbility when j is large (Theorem 3.1).

so we might expect that assumption (b) would hold for many EI item sequences. To gain

some intuition about assumption (c), we may rewrite it as

Var(Ai 18) E,L1E11:11 Cov(A1. Ai 18)
1. (17)

E27.1 Var(A1 Ai_1 ,8) E;1=1 Var(Ai A1_1, to

Hence, recalling that the Ai are bounded, (c) implies the fast EI condition,

i-1
2 2. Cov(Ai, I 0) is bounded, as J oo.

i= 1 j=
(18)

This condition is almost ubiquitous in general CLT's for dependent random variables (e.g.,

Bradley, 1985). Note that (18) precludes applying Theorem 5.2 in the situation of Theorem

5.1 (c); moreover, from (17) we can see that some additional balancing between the variance

and covariance terms is needed for assumption (c) to hold. Example 5.2 below shows that

Theorem 5.1 (c) can nevertheless occur.

There is another way in which the assumptions (b) and (c) are not entirely innocuous.

EI and its strengthening (18) are second-order conditions (i.e., conditions that restrict only
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the expected values (given 0) of products of two item responses at a time). It is well-known

that second-order conditions alone are not enough to guarantee (16). An example (without

reference to latent traits) is constructed by Bradley (1989, Section 2) of a dichotomous

sequence X for which X, and Xi are independent for every pair i j and yet the CLT

fails. (The reader is referred to Bradley's paper for the rather complicated construction;

also, see Bradley, 1985.) In light of the recent interest in Markov dependence among items

(e.g., Jannarone, 1986: Spray SL Ackerman, 1986), it is intriguing to observe that Bradley's

example arises as a dichotomous scoring scheme for a Markov chain.

We conclude this section with two simpler examples illustrating the practical effects

that item dependence can have on the standard error of ej. The examples are both vari-

ations of the paragraph comprehension example of Stout (1990; Example 2.3). Section

4.2 of Rosenbaum (1988) is also relevant. More complicated examples and/or examples in

other realistic settings might also be constructed.

Example 5.1. Suppose X1. X2 , X3 . . . are binary item response variables, having the same

response curve 1;(9) = 0 (so the latent scale is the interval (0.1) and P[X, = 1 -I- 9).

Moreover, suppose that the items are arranged in successive groups of g0 items as
V. X2 a Xst. ;

Xg. +1 a Xg. +2, .. , X29. ;

etc.,

such that different groups of g0 items are independent of one another, given 0, and items

within a single group are positively correlated, given 0. For simplicity, we will take

Corr(Xi
c if Xi and Xi are in the same group,

X; 19) --,---

0 if not,
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for some fixed c E (0,1). This is a naive model for a paragraph comprehension test in which

several paragraphs are presented and g0 questions are asked for each paragraph. Here. 8

represents a trait common to all the items, which we might wish to think of as reading

comprehension; and the nonzero correlations are induced by nuisance traits, for example,

specific knowledge about the subject matter of the paragraph at hand.

It is straightforward to verify that El holds for this sequence of items; that is, for

any bounded scoring scheme {aj, : m = 0,1; j = 1, 2, ...} generating item scores A; =

(1 XI)ajo + Xi a 2,

J i-31 c- v-
Lo Cov(A1,A
1=1 j=1

0.

Moreover, it can be verified (via Theorem 5.2 or by applying the usual CLT to the para-

graph scores Gk = k+ )g" A -) that for any bounded scoring scheme {a1,} for whichj=kg0+1

Jcrj(0) co,

1 -
A (0)) AN(0,1),

J (6)

given e = 6. Now, for the scoring scheme (11), the item scores are A, = (X 9)/0(1 0)

so that Cov(A A, 10) = 09(1 0) if A1 and A are in the same group, and 0 otherwise.

Letting kj be the greatest integer less than or equal to Jjgo, we see that

2 (go
C.7(6) .7 2- 2 ) 0(1 8)ic=3

c(90 1)

0(1 0)

and is bounded but nonzero as J cc. Hence, using scoring scheme (11),

6) ji (7-7(9)
J (6) crj (8)
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and is asymptotically normal with mean 0 and variance

Ja!1(9) #(1-9) 9:))
;.-- = 0(1 - 9)[1 + c(go - 1)].

I j(9)2

Note that the deviation from the efficient variance 0(1 - 0) is indeed due to dependence

among the go items related to the same paragraph, and that Cj (8) c(go 1)/8(1 - 8)

appropriately characterizes this deviation. This illustrates part (b) of Theorem 5.1. 0

The situation can be understood intuitively as follows: when items in a group are

positively correlated given 8, a particular response to one item in the group is likely to

be duplicated in responses to other items in the same group. Thus, a wrong response is

likely to bias the 8-estimate downward more than is usual, and a right response is likely

to bias the estimate upward, the biasing effect being magnified by the size of the group.

This inflates the effect of noise inherent in the 8-estimation prot-' --n.

Example 5.2. Now let the sizes of the groups of mutually dependent items increase. We

take dichotomous items X1, X2 . with identical ICC's PJ(8) = 0 as before, but now group

them as follows:

Xs(1)+1 X s(11+ X .90)+.9(2);

etc.,

where g(k) is a nondecreasing function of k. For specificity, we will take g(k) ki . Once

again, each group of g(k) items is independent of the other groups, and for simplicity, we

take Corr(X ) c for X, and X in the same group. We can verify that EI holds for

this sequence of items, and apply Liapunov's Central Limit Theorem (Serfling, 1980. p.
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30) to the paragraph scores

to conclude that

L°1

Gh = E Ai
E ,̀g(f)+1

1--jAj Aj(9)1 AN(0,1),
e j (9)

given 0 = 9, for any bounded scoring scheme {aim }. (Here, Theorem 5.2 does not apply

at all, since we shall see below that Cj(9) op.)

As in the previous example

where k j is chosen so that

that is, kj

k j

C.7(9)
2 (g(k)) c

2 ) 9(1 0)
k=1

kj kj+1
E g(k) < J < E g (k),
k=1 kas1

for g(k) = . Thus, Cj(9) grows like

5 (5 ri
EkkiJ. g(k) 6 4

(Incidentally, this also helps establish El, since it shows that Cj(67)/J 0 as J oc .)

Hence,

Ji(e - {J-ii3(9)+ J-ic,(8)}i A, - A(8),
(8) a j (8)

which is asymptotically normal with mean zero and variance JiCj(9)/1.7(0)2

(0.871)c8(1 0). Although the asymptotic variance appears lower than the efficient vari-

ance 8(1 8), the rate of convergence of ej to 8 is only J-1 , rather slower than the usual

ate .0
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In this example, the groups of dependent items become so large that the magnified

effects of individual item responses have actually slowed the rate of convergence of 83 to

O. These magnified effects would be present in any 8-estimation method that ignored the

nature of the inter-item dependencies. However, this need not be an argument against

using estimation methods that assume local independence when this does not hold. The

real lesson is that if one wants to continue to use a familiar estimator like 93 even though

LI may fail, then one must be able to qualitatively justify an asymptotic distributiol

assumption like (14), and to quantitatively estimate C3(0) so that realistic standard errors

of estimation can be calculated, etc. Note that in Example 5.2, Cj(8) is unbounded as

J oo, but El still holds; the unboundedness of C3(8) is responsible for the tower rate

of convergence of 97 to 0. If Ci(8) grows too fast as J oo then EI itself can also fail.

The quantity C3(0), or perhaps its average value over all 8's, should be viewed as an

index of departure from local independence, locating collections of itemstestsalong a

continuum of unidimensional behavior from strictly locally independent uniiimensional,

dL = 1, situations to dramatically non-unidimensional. dE > 1, situations. This suggests

the following model fit/trait estimation taxonomy, based upon the index Ci(0) (contingent.

of course, upon the qualitative acceptance of (14));

I. Cj(8) 0 for all realistic 8's. In this situation, ability estimation based on a

c/L = 1 model could proceed as usual, using familiar standard errors such as i3(0)-'/2.

This situation covers both alL = 1 settings as well as those essentially undimensional,

dE = 1, settings that only mildly violate LI.
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II. Cj(0) 0 0 but moderate in size for all realistic irs. Here, 0-estimation procedures

based on LI could still be used but the conventional standard errors would have to be

replaced by (4./(9) + c,(9))1/211,(8). This would be the usual dE ::--- 1 setting.

III. c,(9) 0 of substantial size for many 9.s. This would suggest that there is

so much residual variability in the data after conditioning on 0, that some genuinely

multidimensional latent trait model may be needed.

Of course, the practical use of such a taxonomy rests on effective estimation of Cj(9)

itself. Work recently completed by Nandakumar and Stout (1989) aims at developing a

practical index of EI for binary items, related to C j (0) but not adapted to the task of trait

estimation. In particular, they investigate empirically the extent to which dE = 1 holds

or fails in the paragraph comprehension setting, as the number of items per paragraph

increases.

Another approach to estimating C j(9) is suggested by the work of Gibbons, Bock,

and Hedeker (1989). With the help of a computational device called the modified Clark

algorithm, they are able to factor-analyze binary items, assumed to have normal ogive

response curves, with correlated specific factors. C(0) can then be estimated from the

common factor loadings and specific factor correlations. at least when their one-factor

solution leads to the same latent trait as identified in the definition of dE = 1.
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6. Application to the Dichotomous Case

In the binary (dichotomous) case, in which X j takes the value 0 or 1 depending on

the examinee's answer to the jih item, the tiL =1 likelihood is

P[X.-1 = Z1 le = = II 131(9)z, [1 p,(9)]2z, (19)
i=1

with monotone item characteristic curves (ICC's) PAO) = P[X = 110 = 6]. Let us

assume only that El and LAD hold with respect to 0. The definitions and theorems

presented in Section 3 all specialize to the dichotomous setting, and in fact, most were

introduced in this setting by Stout (1990). The MLE must solve the likelihood equation,

0 = E Alj(i9j)1Xi P;(ej)), (20)
i=1

where A (0) = log P,(0)/(1 P, (0)) (the use of the log-odds-ratios A, is equivalent to using

the log-category-pvibabilities AA and Ail from Section 4, and avoids summation over the

n = 2 response f_ategories). As before, boundedness of Aij(0) together with EI guarantees

that '711.1(0) converges to zero, given 0 = 0. More precisely, we will assume that, for all 0.

there exists an interval Be containing 0 and a constant Me < oo, such that

IA,nt)1 < m, Vt E B,, vi. (21)

To complete a proof of consistency, we again need to bound the test information function

as

ic--
irj(0) = - A1,(0)P;(0) > ce > 0,J
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as J oo, and as in Proposition 4.1, LAD is a sufficient but not necessary condition

to achieve this. Note that the information function in (22) is precisely the same one

introduced in (5) for n = 2 response categories.

Theorem 6.1. Let X be a dichotomous item sequence satisfying El, (21), and (22). Then

there exists a sequence {i j : J > Jo} of roots of (20) such that

lim PII oj 6 i< e = 81= 1,Joo

for every E > 0.

Theorem 6.2. Suppose the assumptions of Theorem 6.1 hold, and let t; .7 be any sequence

of consistent estimates of 8, given 0 = 8. Then, the Newton's method improvement,

= £`.7(i.1)

is also consistent for 6 .

An obvious candidate for the initial guess in Theorem 6.2 is oj = P J-3 (S j). From

(20) and the above results, we see again that the consistency and asymptotic distribution

of 8j is tied up with the behavior of the centered weighted averages

(8) = A (0)

1
= 2 a (8)1,

i=j
(23)

with aj Alj (8), where again the dependence of ai on 8 does not matter since 0 is fixed.

Once again, let

cr2j(8) = Nrar(A j 19)

1 2= 1:11 (0)I1 Pi (8)} +
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and let Cj(9) = (2/J) EII E A(8)A1j(9)Cov(Xi, X JIB).

Theorem 6.3. Suppose that the assumptions of Theorem 6.1 hold for the item sequence X

and the latent trait O. Also suppose, given e = 9, that in (23),

1
[A Aj(8)] AN(0, 1).

crj(9)

Finally, suppose R(J) is a function for which R2 (J)C (9)I J remains bounded. Then,

R(.1)(0 0) AN (0, 1..f2.21".7(9) (9)
J j(9)2 )

(24)

Moreover, if ej is any estimator for which R(J)(0 0) is bounded in probability, rj from

Theorem 6.2 is also asymptotically normal with the same asymptotic variance.

Once (24) is deemed qualitatively acceptable, the asymptotic behavior of ej is deter-

mined by Cj(0). When C(G) is near zero, we can expect the items to behave as though

LI were true; when C3(0) is much larger, we should expect item behavior that can be

effectively analyzed only with a multidimensional model.

7. Discusoion

In assessing the shortcomings of the traditional local independence approach to item

response modeling, Drasgow and Parsons (1983, p. 198) conclude, "it seems clear that

researchers should be more concerned with the robustness of estimation techniques to

minor violations of dimensionality assumptions than with the possibly neverending task

of measuring all latent variables that underlie responses in a particular content domain."

This call for the study of structural robustness in IRT is compelling: Although violations of
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strictly unidimensional latent structure can sometimes be explicitly modeled and exploited,

many situations call for a unidimensional approach that is tolerant of minor violations of

strict unidimensionality.

In this paper we have extended Stout's modeling notion of essential independence, EI,

for binary items (Stout, 1987; 1990) to polytomous item sequences. Essential independence

permits some dependence among items such as would be caused by minor violations of

local independence, LI, due to nuisance trait multidimensionality, but still allows a single

dominant latent trait to be identified. This type of mild interitem local dependence is

arguably more realistic than unidimensional local independence models, di, = 1, for many

currently-used ability and achievement tests.

For items in which the expected amount of credit awarded increases with the latent

trait, we have developed a theory of ability estimation under EI that closely parallels Stout

(1990). As in Stout's dichotomous response theory, monotonicity need not be assumed

for the individual items, but rather only for the test characteristic curve. Under this

aggregate monotonicity condition, called local asymptotic discrimination. LAD, we have

shown that the transformation A J-1(Aj) of the raw test score is a consistent estimator of

each examinee's e as the test length J grows. A definition of essential unidimensionality,

dE = 1, was proposed based on EI and LAD holding with respect to a unidimensional trait

O.

An alternative to scoring the items using an ad hoc scoring scheme {aim} (which leads

to the test scores A j above) is to ignore the local dependence among the items and employ
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a well-known LI-based estimation procedure. Since it is common to use an LI model even

when LI is believed to be only approximately true, the behavior of such a procedure in the

more realistic EI setting is an important issue, as Drasgow and Parsons attest to above.

Maximum likelihood estimation of 8 was examined in this light.

The MLE ij based on a unidimensional LI model was shown to be consistent for each

examinee's 0 as the test length J grows, when only EI and not LI holds. In this sense

ej is robust as an estimator of 9 under this realistic structural violation of LI. When an

estimator such as e j is found to be consistent, its precision as an estimator is usually

judged by the theoretical asymptotic distribution of J'/2(ej 9). Under LI, we expect this

to be asymptotically normal with mean zero and variance 1/ii (9) as J oo , where ij(8)

is the test information function. When tij is based on an LI model but only EI holds,

this asymptotic distribution may fail in various ways: the rate .71/2 may be preserved

but the variance may be inflated by an essentially constant amount; the rate JI/2 may

fail; and finally, it is conceivable that asymptotic normality itself fails, with any rate of

convergence. Hence, the robustness of consistency for the MLE does not extend to a

robustness of asymptotic distribution, under EI violations of LI.

Conditions for asymptotic normality of ij involve higher product-moment assump-

tions that do not admit easy rigorous checks from the data. Hence, asymptotic normality

itself is usually a qualitative issue that must be decided by the practitioner in each ap-

plication. If asymptotic normality is qualitatively acceptable, the correct variance can be
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es.

calculated with the help of the expression

J i-1
C AO) =

2
Cov Ai 10),

is:31 jag 1

where the A 's score each response category according to the derivative of the log-category-

probability: A = En:20 V(8)Yjm . In princip:, t`j(6) could be positive or negative;

however, in many educational testing settings, we expect it to be positive. Under El,

C.7(0)/J 0, but C./ (0) itself need not tend to zero.

For fixed J, the quantity C.7(6) should be viewed as an index of local item dependence

along a continuum that connects strictly di, = 1 unidimensional models with strictly

dE > 1 multidimensional models. Such a continuum has also been suggested by Drasgow

and Parsons (1983). The dE = 1 unidimensional models, which are the focus of this paper,

form the middle of this continuum. The nearer Cj(19) to zero, the more we can expect

latent trait estimation to behave as though LI were true. The larger Cj(8), the more

we should expect item behavior that can be effectively analyzed only with an explicitly

multidimensional latent trait model. Thus, if C.7(6) could be effectively estimated in

practice, we would be able to use it to predict the benavior of 0j. Varous ideas for doing

this are provided by Wainer and Wright (1980), Gibbons, Bock, and Hedeker (1989), and

Nandakumar and Stout (1989). For this reason, the non-robustness of distribution of

need not be defeating.

The principal assumptions needed to establish consistency of the LI-based MLE were

EI and that the information function ij(8) (calculated as though LI were true) be bounded

away from 0 and co. Indeed, a hierarchy of identifiability conditions for estimating 6 can be
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developed, starting with cumulative RCC monotonicity M (i.e., ordered-response items),

moving througn test characteristic curve monotonicity LAD, to the bounding of 1.7 (8) away

from 0. Each of these conditions in some sense implies the next, and all allow various forms

of unidimensional latent trait estimation. This hierarchy illustrates the transition from

highly interpretable but very restrictive conditions, such as M, to less restrictive conditions

that do not admit easy psychometric interpretation, such as the bounding conditions on

. L(9).

Essential independence plays a central role in the convergence of e j to 8 because it

guarantees the stability of certain weighted averages of item sc,rf;s that appear in the

LI-based log-likelihood. Therefore, we might expect that under EI and suitable regularity

conditions, other estimatots that depend on the stability of the LI-based log-likelihood

would also be consistent estimators of 8. Indeed, a trivial modification of the proof of

Theorem 4.1 shows that the posterior mode, waich maximizes the posterior density

P[Xj = zj 19]f(9)
fj(9 IX-7) = PIXJ = zjj

is consistent for 8 under the conditions of that theorem and a mild nondegeneracy con-

dition on the density (6) of e in the examinee population. The posterior mode has

been considered by Samejima (1969) and by Lord (1986), for example. A different set of

regularity conditions from those employed in Theorem 4.1, which are equally plausible in

applications, can be used to obtain consistency of the posterior mean,

E[O l X j) = f 8[109 X Ade.
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Essential independence is used here to ignore the part of the integral away from the value

tio that generated the data X i; see, for example, the proof of equation (5) in Walker (1969).

The regularity conditions needed generalize Walker's conditions, and incidentally provide

another proof of consistency of the NILE. The posterior mean has been considered by, for

example, Bock and Mislevy (1982) as well as earlier Sz.inejima (1969).

Essential independence is thus seen to be a minimal condition under which strictly

cIL =1 trait estimation procedures may be expected to work when applied to mildly mul-

tidimensional data. Our examination of essential independence in the polytomous ite-n

response setting shows that this condition is not an artifact of the simple structure of

dichotomously-scored tests, but a general condition that can be fruitfully applied to stan-

dardized tests of all sorts. Moreover, we have shown that a rigorous approach to the struc-

tural robustness analysis advocated by Drasgow and Parsons (1983) is possible. Locally

independent latent trait models can, and should, continue to be used to develop estimation

and decision procedures in IRT, if for no other reason than their analytic simplicity. How-

ever, before LI-based procedures are applied on-line, they should be thoroughly examined

under the more realistic assumption of essential independence.
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